Biomedical Data Science at Vanderbilt

December 13, 2017

Bradley Malin, Ph.D.
Vice Chair for Research, Department of Biomedical Informatics
Professor of Biomedical Informatics, Biostatistics, & Computer Science
Vanderbilt University
Informatics Big Picture

- Department of Biomedical Informatics situated in the School of Medicine
- Over 40 primary faculty and 40 secondary faculty
- Approximately 40 trainees
 - MS / PhD
 - MSACI
 - Clinical Informatics Fellows
 - Undergraduate and high school interns
- NLM T15 (with data science supplement)
- NLM T32 (big data science)
T15 Principle Investigators

Bradley Malin, Ph.D.
Biomedical Informatics, Biostatistics & Computer Science

Cindy Gadd, Ph.D.
Biomedical Informatics

Gretchen Purcell Jacks, M.D., Ph.D.
Biomedical Informatics & Surgery
Vanderbilt BIDS: Big Biomedical Data Science Training Program

Cindy Gadd, Ph.D. Biomedical Informatics
Jeffrey Blume, Ph.D. Biostatistics
Bradley Malin, Ph.D. Biomedical Informatics, Biostatistics & Computer Science

https://news.vanderbilt.edu/2016/04/21/new-doctoral-track-focuses-on-big-biomedical-data-science/

https://www.vumc.org/dbmi/vanderbilt-big-biomedical-data-science-bids-program
The Vanderbilt HEAlth Data Science Center (HEADS) was established to focus on the innovation and application of data science to the biomedical domain. HEADS serves as an umbrella for, and embelishes on the work of, multiple laboratories at Vanderbilt University working in this domain.

HEADS grew out of a confluence of technical advancements and policies that have pushed the biomedical community into the age of data science. This is due in part to the wide-scale adoption of health information technologies, partially due to federal policies (e.g., meaningful use incentives), has stimulated an explosion in the sheer quantity of patient data stockpiled in healthcare organizations and made available to biomedical researchers. At the same time, personalized medicine initiatives are making it increasingly feasible for physicians to collect more detailed data on their patients both within the clinical domain and through non-traditional sources, such as smart home and mobile technologies. And third, distributed computing platforms have become viable commercial products, such that spinning up and managing virtual machines in the hosted environments like cloud is becoming simple and cheap.

Many people are focused on "big data", but this is only one piece of the broader data science puzzle. To make the most of data, we need to engineer technologies that support trustworthy infrastructure and speed up scientific inquiry. In doing so, we can enable hypothesis testing over massive datasets, which in turn, could lead to detection with statistical significance - even for rare disorders. HEADS strives to achieve success in this domain by integrating data-based scientists, organizational experts, and knowledge from specific application domains to ensure that the discovery process is oriented towards...
Primary BIDS Faculty Appointments

School of Medicine
- Anesthesiology
- Biochemistry
- Biomedical Informatics
- Biostatistics
- Cancer Biology
- Genetics
- Health Policy
- Medicine
- Molecular Physiology & Biophysics
- Hematology / Oncology

School of Engineering
- Biomedical Engineering
- Computer Engineering
- Computer Science
- Electrical Engineering

School of Arts & Sciences
- Biology
- Chemistry
3 Formal Levels of Education

• Ph.D. in Biomedical Informatics: Data Science Track (DST)
 • 5 year commitment

• Ph.D. in Another Field: M.S. in DST
 • 2-3 year commitment

• Ph.D. in Another Field: Course & Research Sponsorship
 • 1 year renewable (but competitive)
2016 – 2017

• Ph.D. in Biomedical Informatics: Data Science Track (DST)
 Mary Lauren Benton
 Evolutionary Genomics

• Ph.D. in Another Field: M.S. in DST
 Michael Pritchard
 (Ph.D. Student in CS)
 Adversarial Learning for
 (Anti-)Viral Systems

 Nick Strayer
 (Ph.D. Student in Biostats)
 Visualization of Big Statistics

• Ph.D. in Another Field: Course & Research Sponsorship
 Lucy D’Agustino
 (Ph.D. Student in Biostats)
 New Approaches to
 Significance Scoring

 Andrew Plassard
 (Ph.D. Student in CS)
 Big Brain Image
 Processing

 Rohit Venkat
 (Ph.D. Student in Molecular
 Physiology & Biophysics)
 Big Math Models of
 Cellular Signaling
2017 – 2018

• Ph.D. in Biomedical Informatics: Data Science Track (DST)

 Mary Lauren Benton
 Evolutionary Genomics

 Kim Kondratieff
 Phenomics

 Grayson Ruhl
 Data Privacy

• Ph.D. in Another Field: M.S. in DST

 Michael Pritchard
 (Ph.D. Student in CS)
 Adversarial Learning for (Anti-)Viral Systems

 Nick Strayer
 (Ph.D. Student in Biostats)
 Visualization of Big Statistics

• Ph.D. in Another Field: Course & Research Sponsorship

 Sarah Maddox
 (Ph.D. Student in Biochemistry)
 Phenotypic Heterogeneity in Small Cell Lung Cancer
BMIF 6300: Introduction to Biomedical Informatics

BMIF 6310: Introduction to Bioinformatics

BMIF 6315: Methodological Foundations of Biomedical Informatics

Core Competencies

BMIF 6332: Scientific Communication
BMIF 6315: Methodological Foundations of Biomedical Informatics
BMIF 6310: Introduction to Bioinformatics
BMIF 6300: Introduction to Biomedical Informatics

Electives (4 courses)

BMIF 7380: Data Privacy in Biomedicine
BMIF 7360: Clinical Research Informatics
BMIF 7311: Systems Biology
BMIF 7340: Clinical Information Systems & Databases

Journal Club (Fall)
Research Colloquium (Spring)
Prerequisites (not for graduate credit):
CS 1101: Programming and Problem Solving &
2201: Program Design and Data Structures

Core Competencies

CS 5250: Algorithms

CS 5892: Special Topics - Big Data

CS 6310: Advanced Algorithms

CS 6360: Advanced Artificial Intelligence

EECE 6358: Quantitative Medical Image Analysis

Electives (4 courses)

CS 6362: Machine Learning

CS 6310: Advanced Algorithms

CS 5274: Modeling and Simulation

Computer Science
Methods

Core Competencies

- BIOS 6311: Principles of Modern Biostatistics
- BIOS 6312: Modern Regression Analysis
- BIOS 7330: Regression Modeling Strategies
- BIOS 6341: Introduction to Probability and Statistical Theory
- BIOS 6342: Contemporary Statistical Inference
- BIOS 8366: Advanced Statistical Computing
- BIOS 7362: Statistical Learning

Electives (4 courses)

- BIOS 8372: Bayesian Methods
- BIOS 6312: Modern Regression Analysis
- BIOS 8366: Advanced Statistical Computing
- BIOS 7330: Regression Modeling Strategies
- BIOS 6341: Introduction to Probability and Statistical Theory
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSCI 3272</td>
<td>Genome Science</td>
</tr>
<tr>
<td>CANB 8340</td>
<td>Introduction to Cancer Biology</td>
</tr>
<tr>
<td>HGEN xxxx</td>
<td>Data Integration in –Omics*</td>
</tr>
<tr>
<td>IGP 8002</td>
<td>Bioregulation II</td>
</tr>
<tr>
<td>NURS 5103</td>
<td>Human Experience of Health & Illness Across the Lifespan I</td>
</tr>
<tr>
<td>NURS 5303</td>
<td>Human Experience of Health & Illness Across the Lifespan III</td>
</tr>
<tr>
<td>IGP 8001</td>
<td>Bioregulation I</td>
</tr>
</tbody>
</table>

Electives (4 courses)

- OR

Core Competencies

- Biomedical Science
T15 Supplement – Data Privacy Course
(http://hiplab.mc.vanderbilt.edu/courses/BMIF380/)

BMIF-7380 / CS-8396-02: Data Privacy in Biomedicine

Main | Schedule | Selected Prior Projects

Syllabus (printable) | Who / When / Where | Description | Prereqs | Grading | Topics

Who / When / Where
Instructor: Bradley Malin
Semester: Spring 2016
Time: Mondays & Wednesdays, 3:10 - 4:25pm
Location: Featheringill Hall, Room 313
Office Hours: Upon request, Location: 2525 West End Avenue, Suite 1030 (map)

Course Syllabus (PDF), Evacuation Plan (PDF)

First Day of Class: January 11, 2016

Description
The integration of information technology into biomedical environments has enabled unprecedented advances in the collection, storage, analysis, and rapid dissemination of patient-specific data. Many organizations need to share data for various purposes, such as quality assurance, public health, and basic research. In today's complex networked environments, it is increasingly difficult to share biomedical data due to concerns about patient privacy and anonymity. The goal of this course is to introduce students to the computational challenges, as well as formal solutions, for data privacy in healthcare and biomedical environments. Data privacy is an interdisciplinary problem, so this course will touch on issues in computer science, law and policy, and biomedicine.
Data Privacy Course Extensions: Personnel & Timeline

You Chen, Ph.D.
Biomedical Informatics

Daniel Fabbri, Ph.D.
Biomedical Informatics & Computer Science

Bradley Malin, Ph.D.
Biomedical Informatics, Biostatistics & Computer Science

Xiaoqian Jiang, Ph.D.
Biomedical Informatics

Lucila Ohno-Machado, M.D., Ph.D.
Biomedical Informatics & Medicine

Shuang Wang, Ph.D.
Biomedical Informatics
T15 Supplement – Data Privacy
(http://hiplab.mc.vanderbilt.edu/courses/BMIF380/)

Current Course

- Philosophy, Law, Policy, & Ethics
- Access Control and Auditing
- NLP for de-identification
- Re-identification methods
- Formal anonymization algorithms
- Advanced anonymization (e.g., differential privacy)
- Secure multiparty computation
- Case studies in biosurveillance, genomics, and medical record linkage

Extensions

- Electronic Consent
- Case studies based on the iDASH Privacy Challenge / Workshops (2015, 2016, & 2018)
- Secure hardware for biomedical data analytics
- Privacy preserving distributed data analytics (e.g., grid logistic regression)
- Migration to an online environment
T15 Supplement: Case Studies as Educational Tools

• Introduce the complexity and multidisciplinary nature of biomedical informatics projects

• Present emerging issues and developing methodologies in evolving areas of the field

• Provide opportunities to identify social and ethical issues about health data and technology

• Illustrate generalizable lessons, which can be applied to other problems in the field
Case Studies as Educational Tools: Curriculum and Educational Goals

• Formalize the structure of biomedical data science case studies

• Create an initial series in a variety of open source formats, including print, online text, and video lectures

• Make case studies available for sharing across NLM training programs
Case Studies as Educational Tools: Proposed Cases

<table>
<thead>
<tr>
<th>Case Study</th>
<th>Faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building the infrastructure to support the precision medicine initiative</td>
<td>Paul Harris, Ph.D.</td>
</tr>
<tr>
<td></td>
<td>Joshua Denny, M.D., M.S.</td>
</tr>
<tr>
<td>Learning new computational phenotypes from population-scale clinical data</td>
<td>Thomas Lasko, M.D., Ph.D.</td>
</tr>
<tr>
<td>Predicting suicide attempts in electronic health records</td>
<td>Colin Walsh, M.D., M.A.</td>
</tr>
<tr>
<td>Explanation-based electronic medical record auditing</td>
<td>Daniel Fabbri, Ph.D.</td>
</tr>
<tr>
<td>Learning organizational structure and collaborative teams through</td>
<td>You Chen, Ph.D.</td>
</tr>
<tr>
<td>electronic medical record utilization</td>
<td>Nancy Lorenzi, Ph.D.</td>
</tr>
<tr>
<td>Big data and why privacy does not have to die</td>
<td>Brad Malin, Ph.D.</td>
</tr>
</tbody>
</table>
Case Studies as Educational Tools: Personnel and Timeline

• Case Series Organizers and Course Directors:
 - Project Manager: Carolyn Diehl

• Timeline:
 - Case Structure – February 2018
 - First Cases – April 2018
 - Course Offering – Summer 2018
Supplemental Training (Selected)

• Biomedical data science meet-ups once a month
 • Presentations by faculty and students on finished and in-progress research
 • Less formal setting to encourage interactive learning

• Pizza and High Performance Computing
 • http://www.accre.vanderbilt.edu/?page_id=3243
 • Monthly seminar on a range of topics
 • Python and analytics on HPC
 • Parallel processing in R
 • Big data tools and Hadoop
 • Running next gen sequencing on HPC
Data Science at Vanderbilt

• No official program

• Provost funded a transinstitutional program (TIP) to build a data science community
 • 5 Post-docs sponsored at 0.2 FTE
 • Standalone and joint-sponsored seminars
 • Think tanks (where specific datasets are reviewed)
 • University-wide conference

• Provost has convened two committees to develop strategic plan for
 • University-wide initiative (*includes Malin*)
 • M.S. program in data science, with application focus areas such as biomedicine (*includes Blume and Malin*)
Questions?

b.malin@vanderbilt.edu

Health Data Science Center
https://medschool.vanderbilt.edu/heads/

Health Information Privacy Laboratory
http://www.hiplab.org/

Center for Genetic Privacy & Identity in Community Settings
https://medschool.vanderbilt.edu/getprecise/