Data science training at the University of Colorado

Lawrence Hunter, Ph.D.
Director, Computational Bioscience Program
University of Colorado School of Medicine

Larry.Hunter@ucdenver.edu
http://compbio.ucdenver.edu/Hunter
@ProfLHunter
PhD Program

• Focus: Creating developers of novel methods

• Core curriculum:
 – Shared biomedical research “core” course
 – Introduction to Biomedical Informatics
 – Advanced Biomedical Informatics
 – Statistics requirement (various ways to meet)
 – Ethics for Biomedical Informaticians

• Our students matriculate with strong CS (usually MS or industrial experience)
How to stay up to date?

• All core courses (except statistics) are updated annually.
• Advanced biomedical informatics course reflects faculty research interests
• Key pillar of our training program mission statement is that students are trained to become self-directed and life-long learners.
 – Woven into curriculum and training experiences throughout graduate program
Student diversity

- Despite very diverse backgrounds (majority female, significant African-American, Hispanic and Native American enrollment), all of our students matriculate with substantial computational and mathematical backgrounds.
- Preparatory work available in our non-degree summer STTP program (several current students are graduates).
Tools and Techniques

• Our focus is on hands-on research training.
 – Students begin learning about design of research projects on the first day of first semester
 – ”Intro” course work is to write an R03-like proposal, do peer review, rewrite, and present orally and in writing.
 – “Advanced” course work is similar, but requires executing proposed project and reporting, orally and in writing, on the results of the project
 – Rotations begin second semester.
Tools and Techniques (2)

• Strong focus on scientific communication:
 – Making a claim and supporting it with evidence
 – How to argue for significance of a claim
 – How to contest a claim and/or evidence

• Lots of practice in written and oral presentations in various genres:
 – Research plans and critiques (grants and reviews)
 – Research results and critiques (papers, manuscript reviewing, oral presentations, asking questions)
Tools and Techniques (3)

• Ethics training a central program component
 – Social context in which research takes place:
 • Who pays for what kind of research, and why?
 • How biomedical informatics fits into society, including an international perspective
 • What are the broader impacts of informatics research?
 – Technical solutions to ethical problems
 • Protected Health Information, and why it matters
 • Privacy, security and encryption, with examples
 – Student selected topics
Postdoctoral training

• More flexible about backgrounds of trainees, but all have decent computational background
• Individual training plans, carefully monitored
• Sometimes involve distance learning for computational skills (including Boulder).
• Coordination with other postdoctoral training programs on campus (D2V: Big Data to Patient Value, Genomic Cardiology fellowship)
Challenges

• Recruiting computer scientists to join our program (often for a personal reason)

• Training skilled bioinformatics analysts
 – Some of our faculty help, but it’s not a responsibility of our training program
 – Distributed across different programs (statistics, biochem & genomics, personalized medicine)

• Finances (we could admit and train many more good students, but are limited financially)