Biomedical Data Science Curricula at the University of Wisconsin

Mark Craven
Department of Biostatistics & Medical Informatics
Department of Computer Sciences
Relevant programs at the University of Wisconsin

- CIBM training grant (NLM-funded T15)
- BD2K training grant (BD2K/NLM-funded T32)
- MS program in Biomedical Data Science
- PhD program in Biomedical Data Science
- summer research program in Biomedical Data Science
Computation and Informatics in Medicine and Biology (CIBM) program

- trainees are recruited from a broad set of PhD programs/departments/centers including

<table>
<thead>
<tr>
<th>recent predocs</th>
<th>recent postdocs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochemistry</td>
<td>Bacteriology</td>
</tr>
<tr>
<td>Biomedical Engineering</td>
<td>Biochemistry</td>
</tr>
<tr>
<td>Chemistry</td>
<td>Biostatistics & Medical Informatics</td>
</tr>
<tr>
<td>Clinical Investigation</td>
<td>Genome Center of Wisconsin</td>
</tr>
<tr>
<td>Computer Sciences</td>
<td>Marshfield Clinic Research Institute</td>
</tr>
<tr>
<td>Epidemiology</td>
<td>Psychology</td>
</tr>
<tr>
<td>Genetics</td>
<td>Psychiatry</td>
</tr>
<tr>
<td></td>
<td>Statistics</td>
</tr>
<tr>
<td></td>
<td>School of Veterinary Medicine</td>
</tr>
<tr>
<td></td>
<td>Waisman Center (human development)</td>
</tr>
</tbody>
</table>
CIBM training approach

• CS prerequisites: *Intro to Programming, Data Structures*
• all trainees should gain solid grounding in both quantitative methods and biomedicine (but each trainee typically has an 80/20 mix of expertise)
• core courses ensure all trainees understand central problems and approaches in biomedical informatics
• dual mentorship
CIBM Curriculum

• core courses

 Introduction to Bioinformatics

 Health Informatics

 Introduction to Biostatistics

• ≥ 2 courses in biomedical sciences
• ≥ 1 advanced course in biomedical informatics
• ≥ 1 advanced course in computer science
• course in *Responsible and Ethical Conduct of Research*
• CIBM seminar course every semester
Some course options

• advanced courses in biomedical informatics
 Medical Image Analysis
 Advanced Bioinformatics
 Modeling Biological Systems
 Decision Making in Health Care
 ...

• advanced courses in computer science
 Machine Learning
 Computer Vision
 Intro to Human-Computer Interaction
 Database Management Systems
 Linear Programming
 Introduction to Data Science
 ...

MS Program in Biomedical Data Science

- students come from a broad range of backgrounds: undergrad degrees in CS/engineering, PhD in biological sciences, PharmD, MD
- CS prerequisites: *Intro to Programming, Data Structures*
- all students should gain solid grounding in both data science methods and biomedicine
- core courses ensure all students understand central problems and approaches in biomedical informatics
- the courses for a student should have a focus in terms of
 - area of quantitative biomedical studies
 - data science methodology
MS in Biomedical Data Science Curriculum

• core courses

 Introduction to Bioinformatics

 Health Informatics

 Medical Image Analysis

 Introduction to Biostatistics

• 2 “concentration” electives

• 2 data science electives

• \(\approx 2 \) “track” electives
MS in Biomedical Data Science Curriculum

• concentration electives

 Medical Image Analysis
 Advanced Bioinformatics
 Modeling Biological Systems
 Decision Making in Health Care
 Statistical Methods for Clinical Trials
 Statistical Methods for Epidemiology
 Statistical Methods for Molecular Biology

…
MS in Biomedical Data Science Curriculum

- data science electives
 - Machine Learning
 - Computer Vision
 - Intro to Human-Computer Interaction
 - Database Management Systems
 - Linear Programming
 - Introduction to Data Science
 - Mathematical Statistics and Inference
 - Statistical Computing
 - Theory and Application of Regression
 ...

New course: Ethical Conduct of Research for Data Scientists

• being developed by Prof. Pilar Ossorio
• centered on 8 case studies that are built around the real-world experiences of biomedical data scientists
• materials to be made available

Case 1: Constructing Genomic Signatures of Oncology Treatment Response

Focus topics:
- Data integrity and reproducibility
- Research misconduct
- Mentor-mentee responsibilities and relationships

Case 2: Developing an Algorithm to Predict Breast Cancer Recurrence Risk using EHR and Genotype Data: Collaboration with a Health System Partner

Focus topics:
- Privacy, data anonymization, and re-identification risk for data subjects
- HIPAA privacy rule
- Federal policy for the protection of human research subjects: use of coded data from humans
- Scientist as a responsible member of society: conducting trustworthy science
New course: Data Analysis and Visualization

• being developed by Prof. Karl Broman
• to be held in conjunction with his *Tools for Reproducible Research* course
• materials to be made available
• key topics
 • managing and manipulating heterogeneous data files
 • data diagnostics and cleaning
 • data visualization
 • exploratory data analysis
 • formulating and identifying appropriate statistical models and methods
 • simulation-based methods